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ABSTRACT: There are multiple reasons as to why a precipitation gauge would report erroneous observations. Systematic
errors relating to the measuring apparatus or resulting from observational limitations due to environmental factors (e.g.,
wind-induced undercatch or wetting losses) can be quantified and potentially corrected within a gauge dataset. Other
challenges can arise from instrumentation malfunctions, such as clogging, poor siting, and software issues. Instrumentation
malfunctions are challenging to quantify as most gauge quality control (QC) schemes focus on the current observation and
not on whether the gauge has an inherent issue that would likely require maintenance of the gauge. This study focuses on
the development of a temporal QC scheme to identify the likelihood of an instrumentation malfunction through the exami-
nation of hourly gauge observations and associated QC designations. The analyzed gauge performance resulted in a tempo-
ral QC classification using one of three categories: GOOD, SUSP, and BAD. The temporal QC scheme also accounts for
and provides an additional designation when a significant percentage of gauge observations and associated hourly QC
were influenced by meteorological factors (e.g., the inability to properly measure winter precipitation). Findings showed a
consistent percentage of gauges that were classified as BAD through the running 7-day (2.9%) and 30-day (4.4%) analyses.
Verification of select gauges demonstrated how the temporal QC algorithm captured different forms of instrumental-based
systematic errors that influenced gauge observations. Results from this study can benefit the identification of degraded
performance at gauge sites prior to scheduled routine maintenance.

SIGNIFICANCE STATEMENT: This study proposes a scheme that quality controls rain gauges based on its perfor-
mance over a running history of hourly observational data and quality control flags to identify gauges that likely have
an instrumentation malfunction. Findings from this study show the potential of identifying gauges that are impacted by
issues such as clogging, software errors, and poor gauge siting. This study also highlights the challenges of distinguishing
between erroneous gauge observations based on an instrumentation malfunction versus erroneous observations that
were the result of an environmental factor that influence the gauge observation or its quality control classification, such
as winter precipitation or virga.
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1. Introduction

Numerous hydrometeorological applications depend on ob-
servations recorded by surface precipitation gauges. Real-
time dissemination of gauge observations contributes to the
information needed in the decision-making processes for vari-
ous flood-type operations (NOAA 2019; Laber 2020). Precipi-
tation gauges are routinely used for the evaluation and
verification of gridded quantitative precipitation estimation
(QPE) techniques derived from weather radars (Tabary et al.
2007; Gourley et al. 2009; Ryzhkov et al. 2014; Cocks et al.
2019; Wijayarathne et al. 2020) and satellites (Derin et al. 2016;
Manz et al. 2017; Gowan and Horel 2020); moreover, gauge
observations are employed in bias correction methodologies
for gridded QPEs (Brandes 1975; Steiner et al. 1999; Seo and
Breidenbach 2002; Ushio et al. 2013; Rabiei and Haberlandt

2015; Zhang et al. 2016). Multidecadal observational records
benefit precipitation climatologies (Hulme and New 1997;
Chen et al. 2002; Carvalho 2020) and derived diagnostic prod-
ucts, such as average recurrence intervals (Perica et al. 2013).

The wide-ranging set of applications for precipitation gauges
demonstrate how crucial it is to ensure recorded observations
are free of inaccuracies. There are various factors that can re-
sult in erroneous gauge observations, and these factors can be
generally sorted into two different categories: systematic errors
and instrumentation malfunctions. A systematic error is defined
as a consistent, nonrandom inaccuracy inherent in equipment
or an approach. Systematic errors related to gauge observations
focus on the limitations of the gauge instrumentation design or
the challenges with obtaining accurate liquid accumulations
based on environmental factors.

Previous studies have assessed various systematic inaccuracies
and observational limitations with precipitation gauges. Syste-
matic errors relating to the measuring apparatus are depen-
dent on the instrumentation type. Tipping-bucket gauges are
subject to splash-out and tip counting errors (Parsons 1941;
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Upton and Rahimi 2003; Molini et al. 2005) as well as sampling
errors at small temporal scales (Habib et al. 2001; Boudala et al.
2017). The time to conduct the tipping process can result in pre-
cipitation not being measured (Duchon and Essenberg 2001;
Duchon and Biddle 2010). Observations from weighing gauges
can be influenced by frictional drag (Groisman and Legates
1994), oscillatory motions (Goodison et al. 1998), and load sen-
sor noise (Duchon 2008; Leeper et al. 2015). Systematic errors
resulting from environmental factors can also influence the accu-
racy of the recorded observation. Wind-induced undercatch can
vary significantly based on the precipitation type and use of a
wind shield (Allerup and Madsen 1980; Sevruk 1989; Førland
et al. 1996; Yang et al. 1998; Nešpor and Sevruk 1999; Chubb
et al. 2015; Kochendorfer et al. 2017; Pollock et al. 2018). Evapo-
ration or sublimation via wetting losses can occur from moisture
adhering to the internal walls (Groisman and Legates 1994;
Goodison et al. 1998; Savina et al. 2012) or from the application
of heating mechanisms (Metcalfe and Goodison 1992; Larson
1993). Blockages from winter precipitation (Goodison et al.
1998; Rasmussen et al. 2012; Martinaitis et al. 2015) and sub-
sequent postevent thawing (Martinaitis et al. 2015) can also
provide erroneous observations both during and after winter
precipitation events.

Systematic errors are generally quantifiable; moreover, the
ability to quantify systematic errors allow for corrective equa-
tions and collection efficiency curves to compensate for the
systematic biases in observations. This can be conducted
through gauge intercomparisons, laboratory calibrations, par-
ticle and turbulence modeling, and computational fluid dy-
namic simulations (e.g., Lanza and Cauteruccio 2022). Past
research demonstrated the successful quantification and cor-
rection of both mechanical and environmental systematic er-
rors, including that for tipping mechanisms (e.g., Maksimović
et al. 1991; Sevruk 1996; Duchon et al. 2014; Sypka 2019; Liao
et al. 2020), wind-induced undercatch (e.g., Sevruk 1982;
Førland et al. 1996; Yang et al. 1998; Kochendorfer et al.
2017; Pollock et al. 2018), and wetting and evaporative losses
(e.g., Sevruk 1982; Yang et al. 1998; Ye et al. 2004).

Gauge-based impacts related to instrumentation malfunc-
tions fall outside the realm of systematic errors and can also
result in significant errors with gauge observations. Data col-
lection challenges can arise from biological interference and
other material that can clog a gauge cylinder or orifice (e.g.,
Nystuen et al. 1996; Nystuen 1998; Steiner et al. 1999). Other
challenges that can influence a gauge observation can include
poor gauge siting that can result in interference with the mea-
suring process (Steiner et al. 1999; Upton and Rahimi 2003).
Malfunctions with the gauge instrumentation can result in im-
proper calibration of the measuring apparatus, damage to the
instrumentation, power outages, and data software and trans-
mission issues (e.g., Groisman and Legates 1994; Kondragunta
and Shrestha 2006; Sieck et al. 2007). Metcalfe et al. (1997) ob-
served that errors from instrumentation malfunctions can be
significant and “virtually impossible to quantify,” yet the need
exists to improve the identification of gauge sites impacted by
instrumental factors.

Gauge quality control (QC) methodologies can easily iden-
tify and flag an erroneous gauge observation, yet QC schemes

generally focus on the current observation and generally do
not provide an indication of the likelihood of an inherent non-
systematic issue with the gauge. Characterizing the overall
quality of a gauge should be investigated based upon how a
gauge performs over an extended period. Forecasters at the
National Weather Service (NWS) Lower Mississippi River
Forecast Center (LMRFC) noted that a more formalized
structure was needed to identify gauge sites that were consis-
tently flagged as unreliable for operational precipitation prod-
uct generation. Real-time gauge assessments at the LMRFC
focused on nonzero observations $ 6.35 mm (0.25 in.) using a
three-tiered classification based on gauge-to-QPE ratio values
for different temporal accumulations (Lincoln et al. 2017).
Forecasters can then graphically view the history of a gauge
across a user-specified period and determine if the gauge
should be stricken from further operational use. Collaborative
efforts between the LMRFC and the National Severe Storms
Laboratory (NSSL) sought to implement a similar practice
across the NWS to better identify a gauge site experiencing an
instrumentation malfunction.

This study describes the development of a best-guess auto-
mated identification and classification scheme for instrumen-
tation malfunctions with rain gauges. Determination of gauge
errors from instrumentation malfunctions in this study relied
on the evaluation of the cumulative QC declarations of hourly
gauge observations over defined temporal periods. Potential
impacts from instrumentation issues that yielded erroneous
observations were assessed through the statistical analyses of
gauge observations and their corresponding QC designations.
The results from this study can provide the foundation for a
situational awareness methodology to identify gauge sites that
are likely in need of maintenance.

2. Temporal QC logic

a. Application of MRMS gauge QC

The first step of the temporal QC scheme was processing
hourly gauge observations through the Multi-Radar Multi-
Sensor (MRMS) system (Zhang et al. 2016) gauge QC algo-
rithm (Martinaitis et al. 2021). The MRMS gauge QC logic
compares hourly gauge observations to 1) gridded MRMS
dual-polarization synthetic radar QPEs (Cocks et al. 2019;
Wang et al. 2019; Zhang et al. 2020a) with an evaporation cor-
rection scheme (Martinaitis et al. 2018) and/or 2) quantitative
precipitation forecasts (QPFs) from the High-Resolution
Rapid Refresh (HRRR; Benjamin et al. 2016) model to deter-
mine if a gauge observation was erroneous. How a gauge is
analyzed in the MRMS QC scheme is based on a proxy for ra-
dar coverage via the hourly Radar Accumulated Quality In-
dex (RAQI) product (Zhang et al. 2020b). The RAQI
product is the radar quality index value, which is derived from
radar beam height, the radar beam location in relation to the
melting layer, and radar beam blockage (e.g., Martinaitis et al.
2018) averaged over a given period. One notable change was
made to the hourly gauge QC logic for this study. The time
window check to indicate when an observation time was
significantly offset from the top of the hour was turned off
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(i.e., all gauges were analyzed regardless of the valid time of
the observation). The resulting MRMS gauge QC process
would assign one of 15 flag classifications to each hourly
gauge observation (Table 1).

Multiple considerations attributed to the use of the MRMS
gauge QC scheme as the foundational input into the temporal
QC classification. The application of radar-derived QPEs in
the QC of gauge observations have shown to benefit the iden-
tification of false zero or false nonzero observations (e.g.,
Båserud et al. 2020; Ośródka et al. 2022) and values that are
significant outliers (e.g., Yeung et al. 2014; Båserud et al.
2020). The MRMS radar-derived QPE employed in the QC
of gauges undergoes its own QC assurances, including clutter
mitigation, removal of nonmeteorological contaminants, re-
duced impacts from beam blockage, and mitigation of bright-
band influences on reflectivity values (Zhang and Qi 2010;
Zhang et al. 2012; Qi et al. 2013a,b; Tang et al. 2014; Zhang
et al. 2016; Tang et al. 2020). The MRMS gauge QC approach
also includes model variables to assist in 1) identifying false
zero and false nonzero observations within regions of substan-
dard radar coverage and 2) delineating impacts on gauges
based on winter precipitation impacts (Martinaitis et al. 2015,
2021). The MRMS gauge QC scheme has a comprehensive
classification for declaring why a gauge passed or failed the
QC algorithm (Table 1) and its performance compared favor-
ably to manual forecaster QC (Martinaitis et al. 2021).

b. Initial hourly temporal QC scheme designation

Assigned hourly MRMS gauge QC classifications were the
foundation for the initial temporal QC classifications. One of
three initial classifications were assigned to each hourly
observation:

• PASS: The hourly gauge observation passed MRMS QC
and is considered of good quality.

• FAIL: The hourly gauge observation failed MRMS QC
and is considered of poor quality.

• WXCN: The hourly gauge observation failed the MRMS
QC but was potentially influenced by some weather-based
condition.

All hourly observations that were passed or conditionally
passed by the MRMS gauge QC (i.e., retained for use in the
MRMS system) were declared as PASS. All hourly observa-
tions that were failed by the MRMS gauge QC were further
examined to see if the QC was likely influenced by environ-
mental factors.

Gauge observations marked as false zeroes (MRMS gauge
QC flag5 10) were reexamined based on the collocated nonzero
gridded radar QPE (Fig. 1). Collocated radar QPE # 1.27 mm
had a higher probability of the QC being influenced by precipita-
tion being evaporated before reaching the ground (Martinaitis
et al. 2018); thus, the hourly temporal QC classification was set
to WXCN. The hourly temporal QC classification was set to
FAIL with collocated radar QPE values . 1.27 mm. Gauge ob-
servations declared as a false nonzero observation (MRMS
gauge QC flag 5 20) were compared to model surface wet-bulb
temperatures (Twb). The surface Twb can account for environ-
ments with above-freezing ambient temperatures and nonsatu-
rated relative humidity values that could sustain solid winter
precipitation (Matsuo and Sasyo 1981). Declared false nonzero
observations in model surface Twb # 5.08C environments had a
greater likelihood of being influenced by postwinter precipitation
thawing and were classified as WXCN, whereas the FAIL classi-
fication was used in environments characterized by Twb . 5.08C.
A lower bound for the surface Twb comparison was not desig-
nated in this study to account for gauge sites equipped with a
heating element that could produce nonzero values from
melting winter precipitation in subzero Twb conditions.
MRMS gauge QC flags characterized with winter weather im-
pacts (QC flags 5 50, 51) account for gauge sites that likely
have the gauge orifice partially or completely blocked and
were assigned the WXCN classification (Fig. 1). All other
nonpassing MRMS gauge QC flags (i.e., outlier and suspect
values) were classified as FAIL.

c. Temporal analysis for all observations

Each gauge site accumulated a history of hourly temporal
QC classifications along with supplemental information (e.g.,
gauge and radar QPE values, average RAQI). The temporal

TABLE 1. Description of the hourly MRMS gauge QC flags utilized in this study, per Martinaitis et al. (2021).

MRMS QC flag Gauge QC description Retain in MRMS

210 Conditional pass}Zero observation (with sources present) Yes
211 Conditional pass}Zero observation (with sources missing) Yes
212 Conditional pass}Nonzero observation (with sources present) Yes
213 Conditional pass}Nonzero observation (with sources missing) Yes

0 Pass}Zero value Yes
1 Pass}Nonzero value Yes

10 False zero observation (rain only) No
20 False nonzero observation (rain only) No
30 Outlier observation}High value (rain only) No
31 Outlier observation}High value (snow only) No
40 Outlier observation}Low value (rain only) No
50 Winter impacts}Zero observation No
51 Winter impacts}Nonzero observation No
60 Suspect observation}Nonzero observation (with sources present) No
61 Suspect observation}Nonzero observation (with sources missing) No
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QC scheme then separately evaluated the history of each
gauge over a running 7- and 30-day period every hour. The se-
lection of the two different temporal periods were designed to
provide two different perspectives on gauge performance:
1) a short-term evaluation for early identification of an instru-
mentation malfunction and 2) a longer-term evaluation for a
more comprehensive assessment.

The temporal QC analysis for each gauge and evaluation
period was conducted via a two-part classification scheme.
The first phase examined all available observations for gauges
with $10% data availability within the evaluation period
(Fig. 2). Emphasis was placed on the percentage of hourly ob-
servations with a FAIL classification over the evaluated pe-
riod. A three-tiered classification was utilized in this phase of
the temporal QC:

• GOOD: The gauge site performance is considered to be of
good quality.

• SUSP: The gauge site performance is considered to be of
suspect quality and warrants further inspection.

• BAD: The gauge site performance is considered to be of poor
quality and has a high potential of having an instrumentation
malfunction. The gauge site warrants further inspection.

The first phase of the temporal QC analysis focused on the
examination of the hourly FAIL percentage for gauges with
sufficient availability. A gauge was assigned a BAD classifica-
tion when $12% of available hourly observations were de-
clared as FAIL. A GOOD classification was given when,4%
of available hourly observations were declared as FAIL.
Percentages in between resulted in a SUSP classification. A
separate long-term weather impact classification, designated
as WXIMP, is considered for each gauge during the 7- and
30-day periods within this phase of the temporal QC logic.
The weather impact analysis was designed to provide infor-
mation on which sites may have experienced significant peri-
ods of environmental influences on the gauge observations.
Gauges with $5% of hourly observations assigned as WXCN
resulted in a WXIMP 5 yes classification. Gauge sites with
,5% of available hourly observations defined as WXCN re-
sulted in WXIMP5 no.

d. Temporal analysis for nonzero precipitation observations

The second phase of the temporal QC scheme examining
the history of hourly observations focused only on the hours
when precipitation was observed (i.e., both the gauge and

FIG. 2. Temporal QC decision tree for all available observations. Decision tree is used for
both the running 7- and 30-day analyses.

FIG. 1. Temporal QC logic decision tree focused on the hourly classifications for the gauge
observations that failed the gauge QC applied within the MRMS system.
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collocated gridded radar QPE were nonzero). This phase of
the temporal QC analysis was conducted if at least 8 h re-
corded observed precipitation and if the gauge site was in a
region of adequate radar coverage (Fig. 3). Defining at least
eight precipitation hours allowed for a minimal sample size to
conduct further analyses. An average RAQI value $ 0.40
during the temporal analysis period was used to denote gauges
that could be compared to the MRMS dual-polarization syn-
thetic radar QPE, which was based on the RAQI guidance from
the MRMS gauge QC algorithm (Martinaitis et al. 2021).

Gauge sites meeting the sample-size and RAQI requirements
were then evaluated using a gauge-QPE bias check and the per-
centage of precipitation observations that were classified as FAIL
(Fig. 3). The evaluation of gauges having 8–20 h of observed pre-
cipitation resulted in only a GOOD or SUSP temporal QC classi-
fication, since there were enough observations to analyze it but
not enough to effectively determine if an instrumentation mal-
function existed. The evaluation of gauges with.20 h of observed
precipitation could utilize the BAD classification given a more
sufficient number of hours to examine. Gauge sites with an overall
bias ratio value of,0.25 or.4.00 were assigned a BAD classifica-
tion. All other gauges leveraged both the bias ratio and the per-
centage of FAIL observations during precipitation-only hours to
assign a classification for this component.

e. Final temporal QC classification

The last step of the temporal QC scheme combines the two
QC classification components into a final overall classification
for each gauge per analysis period (Fig. 4). The lower classifi-
cation level between the two analyses becomes the final tem-
poral QC classification. If only one of the two temporal QC

analysis schemes produced a temporal QC classification (i.e.,
one analysis yielded an N/A), then the remaining non-N/A
classification would be declared as the final classification. The
final temporal QC flags from the 7- and 30-day observational
histories were not combined (i.e., each remained as an inde-
pendent evaluation) to provide the ability to interrogate
gauge performance across different temporal analysis periods.

3. Data and methodology

a. Input hourly gauge observations

Hourly gauge observations utilized in this study primarily
consisted of two national collections of gauge networks: the
Hydrometeorological Automated Data System (HADS; Kim
et al. 2009) and the Meteorological Assimilation Data Ingest
System (MADIS; Helms et al. 2009). Additional regional net-
works included the Snow Telemetry (SNOTEL; e.g., Serreze
et al. 1999), the Flood Control District of Maricopa County
(FCDMC; e.g., Mascaro 2017), and the Harris County Flood
Control District (HCFCD; e.g., Wolff et al. 2019) networks.
Hourly gauge observations were available from 1 June 2020
to 30 September 2021 over the MRMS CONUS domain,
which covers the conterminous United States as well as por-
tions of southern Canada and northern Mexico (Fig. 5a) Over
37 000 unique gauge sites were identified within the domain
area with 69.4% of gauge sites having a greater than 10%
data availability across the entire study period (Fig. 5b).

b. Application of temporal QC scheme

The June 2020 observations were used to spin up both the
running 7- and 30-day temporal analyses, allowing for hourly

FIG. 3. As in Fig. 2, but for precipitation-only observations (i.e., when the gauge and collocated gridded radar QPE are nonzero).
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assessments of the temporal QC logic to begin at 0000 UTC
1 July 2020. Examinations of the hourly temporal QC distri-
butions over the 15-month study period focused on the overall
temporal QC classifications and its two temporal QC classifi-
cation components. Further examinations of the BAD tempo-
ral QC classifications and observations adversely affected by
meteorological conditions were also conducted. Focus was
placed on the hourly MRMS QC flags and the associated en-
vironmental and precipitation properties to examine the dis-
tribution and seasonal variations of impacts that resulted in

the hourly FAIL and WXCN classifications that influenced
the final temporal QC classification. Select gauge sites that re-
ceived a BAD or SUSP classification and were maintained by
the U.S. Geological Survey (USGS) were further investigated
to confirm whether the temporal QC classification was rea-
sonable based on documented gauge maintenance. This in-
cluded an analysis of data patterns and statistical evaluations
of clogged gauges during precipitation events. Correspon-
dence with local USGS field offices were used to verify the
identification of an instrumentation malfunction.

FIG. 5. (a) Map of all gauge sites that had at least one observation ingested by the MRMS system during the study
period for the MRMS CONUS domain area, which includes southern Canada and northern Mexico. Highlighted
in brown contours are the NWS River Forecast Center areas of interest. (b) Each gauge shown is color-coded to its
percentage availability with the distribution of the percentage availability.

FIG. 4. Graphical representation of how the final temporal QC classification is assigned based on the analyses of both all available observations
and precipitation-only observations.

J OURNAL OF ATMOS PHER I C AND OCEAN I C TECHNOLOGY VOLUME 40270

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 03/21/23 06:56 PM UTC



c. Data and study limitations

There are limitations to consider with the temporal QC
scheme, notably with how some gauge sites get classified
based on their observational history, the use of gridded QPE
data as a comparative data source, and gridded QPE data
biases in the analyses. Gauge systematic errors from environ-
mental factors can potentially create significant differences
between the gauge observation and radar-derived QPE that
could influence the temporal QC designation. There is limited
research related to the thawing of winter precipitation, includ-
ing the challenge of melting during a precipitation event,
which can influence the bias ratio comparison with gridded
radar QPE (Martinaitis et al. 2015). Biases and limitation
with radar-derived QPEs values can influence the hourly QC
and the precipitation-based temporal analysis. Radar-derived

QPE limitations can include miscalibration of radar data, un-
representative rate relationships, sampling through the melt-
ing layer, nonmeteorological echoes, and nonuniform beam
filling (e.g., Wilson and Brandes 1979; Smith 1986; Rosenfeld
et al. 1992; Young et al. 1999). Biases in model fields used in
the various QC methodologies can also influence how a gauge
is analyzed within the decision trees.

4. Temporal QC findings

a. Overall temporal QC classifications

Findings from the final temporal QC designations across
the 15-month period were characterized by a generally consis-
tent application of the GOOD, SUSP, and BAD classifica-
tions for both the running 7- and 30-day analyses (Fig. 6). The
distribution of temporal QC classifications for the running
7-day analysis was as follows: 83.5% for GOOD, 13.6% for
SUSP, and 2.9% for BAD (Fig. 6a). A similar distribution

FIG. 6. The percentage distribution of the final temporal QC classification (GOOD, SUSP,
and BAD) along with the WXIMP classification for each hour across the entire study period.
The plot of each distribution along with the mean hourly percentage and standard deviation of
the hourly percentage are presented for (a) the running 7-day analysis and (b) the running
30-day analyses.

TABLE 2. Overall and seasonal mean hourly percentage
distribution and percentage standard deviation of the final
temporal QC classifications (GOOD, SUSP, and BAD) and the
additional WXIMP classification for the 7-day analysis.

Temporal QC
classifications Overall

Seasonal

SON DJF MAM JJA

Mean percentage
GOOD 83.51 82.99 88.59 84.68 80.26
SUSP 13.55 13.90 10.10 13.43 15.36
BAD 2.94 3.11 1.30 1.89 4.38
WXIMP 18.32 13.80 40.22 20.42 7.81

Standard deviation
GOOD 5.68 5.11 3.96 5.80 4.41
SUSP 4.53 4.17 3.42 5.02 3.86
BAD 1.52 1.13 0.72 0.94 0.86
WXIMP 14.03 7.47 12.79 6.47 3.15

TABLE 3. As in Table 2, but for the 30-day analysis.

Temporal QC
classifications Overall

Seasonal

SON DJF MAM JJA

Mean percentage
GOOD 73.16 73.67 79.58 76.38 67.08
SUSP 22.38 21.87 17.39 20.37 26.91
BAD 4.46 4.46 3.03 3.25 6.01
WXIMP 17.19 9.66 41.27 24.36 4.74

Standard deviation
GOOD 5.94 4.93 2.02 3.51 2.89
SUSP 4.54 3.80 1.60 2.94 2.33
BAD 1.60 1.25 0.53 0.65 1.22
WXIMP 16.42 6.46 11.99 13.46 2.31
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was found with the 30-day analysis at 73.2% for GOOD, 22.4%
for SUSP, and 4.4% for BAD (Fig. 6b). The significant reduction
of GOOD temporal QC classifications and increase in SUSP
temporal QC classifications with the running 30-day analysis can
be attributed to the ability to capture more observations that

could help highlight more subtle trends that could identify a
potential instrument malfunction. This also explains the slight
increase in BAD classifications within the longer 30-day analysis.

There were seasonal subtleties across the three-tiered tempo-
ral QC designations. The running 7-day temporal QC analysis

FIG. 7. Map of the (left) final temporal QC classifications and (right) the WXIMP classification for the 7-day analy-
sis ending (top) 0000 UTC 19 Dec 2020 and (bottom) 0000 UTC 30 Jun 2021. Each map is for the MRMS CONUS
domain area, which includes southern Canada and northern Mexico. Highlighted in brown contours are the NWS
River Forecast Center areas of interest.

FIG. 8. As in Fig. 6, but for the initial temporal QC classifications and the WXIMP classification
for the analysis of all available observations.
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saw the average percentage of GOOD flags peak during the
December–February (DJF) months at 88.6% while decrease to
an average of 80.3% during the June–August (JJA) months
(Table 2). Contrasting this were the peaks of both SUSP and
BAD classifications occurring during the JJA months and the re-
duction of SUSP and BAD classifications during the DJF period.
Greater variations in the final temporal QC classifications
occurred during the seasonal transition months of September–
November (SON) and March–May (MAM) based on standard
deviation values. A similar seasonal pattern was also found in
the running 30-day analysis (Table 3).

The greatest variations within the temporal QC algorithm
were found in the WXIMP yes/no classification. A significant
number of gauges were designated with the additional WXIMP
classification from October 2020 to May 2021 (Fig. 6), which
coincided with the period of winter precipitation impacts
across the domain. The average percentage of WXIMP yes
classifications was 18.3% for the 7-day analysis and 17.2% for
the 30-day analysis, yet the average percentage of gauges as-
signed the additional WXIMP flag was .40% for the DJF
months but ,8% for the JJA months (Tables 2 and 3). It is
no coincidence that there was a decrease in the SUSP and BAD
temporal QC classifications when more gauge observations

observed weather impacts. Both the hourly FAIL and WXCN
classifications utilize the same MRMS gauge QC flags. The
scheme looks to delineate between truly failed observations
and observations that were likely influenced by a meteorolog-
ical factor through basic thresholds in this presented method-
ology, yet it is plausible that some hourly observations that
should be declared as FAIL were misclassified as WXCN.
Further examination and discussion of the WXIMP classifica-
tions and its role with the three-tiered temporal QC classifica-
tions are discussed in section 4e.

An examination of two points in time highlights the distri-
bution of the temporal QC classifications and the impacts of
associated meteorological conditions on the classifications
(Fig. 7). The majority of gauge sites with a SUSP classification
were in regions that received the majority of rain events.
Gauges classified as BAD were scattered throughout the do-
main without any spatial patterns, with the exception of the
SNOTEL gauges in the western CONUS. Hourly SNOTEL
observations are subject to 1) data fluctuations related to tem-
perature oscillations that create variations in the speed of
sound with the ultrasonic detector despite a corrective algo-
rithm (Osterhuber et al. 1994; Avanzi et al. 2014) and 2) re-
porting at a coarser data resolution of 2.54 mm. The lack of
SUSP and BAD classifications across most of the domain
with the 0000 UTC 21 February 2021 example (Fig. 7b) were
a by-product of winter precipitation impacts on gauge sites
(Fig. 7d), which limited the ability to properly interrogate
those gauges.

b. Reasoning for final temporal QC classifications

Investigating how gauges were assigned a temporal QC
classification each hour for the 7- and 30-day analyses can be
explored through the all-observations and precipitation-only
components of the temporal QC logic described in sections 2c
and 2d. The temporal QC component considering all available
observations was characterized by a high percentage of
GOOD classifications for both the running 7- and 30-day

TABLE 4. Seasonal mean hourly percentage distribution and
percentage standard deviation of the percentage of gauge sites
that met the temporal QC precipitation-only analysis criteria.

Temporal QC
analysis period Overall

Seasonal

SON DJF MAM JJA

Mean percentage
7-day analysis 21.00 19.34 21.84 23.67 20.22
30-day analysis 55.65 51.52 54.63 57.55 58.36

Standard deviation
7-day analysis 7.58 6.28 7.08 8.78 7.54
30-day analysis 5.49 5.91 2.39 4.50 4.78

FIG. 9. As in Fig. 6, but for the initial temporal QC classifications for the analysis of precipitation-only
observations.
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analyses at 87.8% and 90.1%, respectively (Fig. 8). The average
percentage of SUSP classifications was between 8% and 10%,
and the average percentage of BAD classifications was under
3%. Some seasonal variations can be seen across the three-tiered
temporal QC designation, while there were also additional daily
to weekly variations based on the precipitation occurrences and
their influences on gauges across the domain. Regardless of these
variations, the standard deviation values for the GOOD, SUSP,
and BAD classifications were#5.0%.

The distribution of temporal QC classifications with the
precipitation-only component of the scheme has a number of
differences when compared to the all-observations compo-
nent. The requirements for the precipitation-only component
of the temporal QC analysis stated that there must be at least
eight hours of precipitation during the analysis period and the
gauge must reside in an area of an average RAQI$ 0.40 (Fig. 3).
These requirements limited the number of gauges that went
through this component of the temporal QC analysis. An aver-
age of 21.0% of gauge sites met this criterion across the running
7-day analysis and 55.7% for the 30-day analysis with some sea-
sonal variability (Table 4).

The percentage of site classified as GOOD for the precipita-
tion-only analyses was 69.6% and 64.6% for the two different
temporal analysis periods, respectively (Fig. 9). This reduction
of GOOD classifications compared to the all-observations
analyses was in response to the increase of SUSP classifica-
tions to 28.9% (7-day analysis) and 30.2% (30-day analysis),
respectively. The average percentage of gauges that were clas-
sified as BAD during the 7-day was only 1.5% (Fig. 9a), yet the

percentage of gauges with BAD classifications for the 30-day
analysis increased to 5.2% (Fig. 9b). This is attributed to
more precipitation hours being available for analysis with the
longer temporal period. There were some seasonal variations
in both the application of the GOOD and SUSP temporal QC
classifications; however, the percentage of observations classi-
fied as BAD within the precipitation-only component was con-
sistent throughout the study period.

c. BAD classifications between temporal
evaluation periods

One notable result from the temporal QC classifications
was that a BAD classification via the 7-day analysis does not
directly translate to a BAD classification with the 30-day anal-
ysis and vice versa. An average of 25.1% of gauge sites per
hour had a BAD classification for both the 7- and 30-day anal-
yses with a percentage standard deviation of 11.1% (Table 5).
Similar percentage values were shown for when the 7-day
analysis was SUSP and GOOD while the 30-day analysis was
BAD. This can be attributed to erroneous observations ap-
pearing at various frequencies across a running 7-day period
but was more noticeable in a 30-day evaluation. Approxi-
mately 20.1% of gauge sites were classified as BAD with the
7-day analysis and SUSP with the 30-day analysis, which signi-
fies that impact was localized to that 7-day period but enough
to trigger suspicion at a longer temporal analysis period. Only
2.3% of gauge sites were shown as BAD with the 7-day analy-
sis but GOOD on the 30-day analysis.

d. Evaluation of the BAD QC classification

Understanding why gauge sites were assigned with the
temporal QC BAD classifications required investigating the
hourly performance of gauges. A breakdown of the initial
hourly FAIL classifications showed that the false nonzero pre-
cipitation values (i.e., MRMS QC flag 5 20) were the domi-
nant classification (Fig. 10) and represented an average of
76.0% of hourly FAIL classifications. The associated large
standard deviation of observations per hour was attributed
to both changes in daily weather patterns and seasonal vari-
ability, notably the substantial seasonal decrease during the
winter months. All other modes resulting in an hourly FAIL
classification were steady throughout the study period with no

TABLE 5. The average hourly percentage distribution and
percentage standard deviation of the 7- and 30-day final temporal
QC classification pairings across the study period.

Temporal QC classification

Average
percentage

Standard
deviation

7-day
analysis

30-day
analysis

GOOD BAD 28.43 13.84
SUSP BAD 24.05 5.03
BAD BAD 25.12 11.10
BAD SUSP 20.11 9.27
BAD GOOD 2.29 2.07

FIG. 10. Number of observations per hour for each MRMS gauge QC classification that receive
the initial hourly FAIL classification based on Fig. 1.
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notable seasonal variations. The important factor in relating
the hourly FAIL classifications to the resulting BAD tempo-
ral QC classification is that the two dominant reasonings for a
FAIL flag (false zero and false nonzero observations) would
be captured through the all-observations component of the
temporal QC logic.

The precipitation-only component yielded the greatest per-
centage of the BAD classifications. Most gauge sites with a
BAD classification through the precipitation-only analysis ac-
quired the classification through the percentage of FAIL
hours (Table 6). For the 7-day running analysis, an average of
88.3% of declared BAD gauge sites were failed through only
the percentage of FAIL hours. The high percentage of BAD
gauges via the precipitation-only analysis meeting the FAIL
percentage threshold and not having a poor accumulative bias
ratio can be attributed to variations between smaller gauge
hourly accumulations (e.g., ,5 mm) and radar-derived QPE
that could flag a gauge enough times during an analysis period
while performing adequately with larger hourly accumula-
tions. This could also be a by-product of the combination of
minimum number of hours (20) and the percentage of FAIL
gauges threshold (12%) needed to result in the BAD classifi-
cation. About 10.9% failed both the percentage of FAIL
hours and the bias ratio check, while only 0.8% of gauge sites
failed only the bias ratio check. This means that most gauges
that failed the bias ratio check also failed the percentage of
FAIL hours criteria. Similar results were found in the 30-day
analysis (Table 6), and both temporal period evaluations had
no notable seasonal variations.

e. Weather impact identification

The reduction in temporal QC BAD classifications during
the cool season can be contributed to the challenge of

identifying potential instrumentation malfunctions during in-
stances of winter precipitation, which tend to create poor gauge
observations. Hourly gauge observations identified as having
winter precipitation impacts (MRMS QC flags 5 50, 51) and
false nonzero observations (MRMS QC flag 5 20) that are po-
tentially related to postwinter precipitation thawing were the
dominant reasons for the hourly WXCN classifications across
the cool season (Fig. 11). The MRMS QC algorithm can iden-
tify of hourly accumulations that were either significantly re-
duced or were zero during winter precipitation (Martinaitis
et al. 2015, 2021); however, there was uncertainty in determin-
ing the classification of gauge impacts related to postwinter pre-
cipitation thawing.

A distinct diurnal cycle existed in the false nonzero obser-
vations (not shown) that was equivalent to the findings of
Martinaitis et al. (2015). There was an average of 243 false
nonzero observations per hour between 0100 and 1400 UTC,
which then increased to an average of 609 false nonzero ob-
servations per hour from 1700 to 2100 UTC. An examination
of hours with at least 500 false nonzero observations (i.e.,
hours with large areas of postwinter precipitation thawing)
found significant coefficient of determination (R2) values with
the Twb ranges of25.08 , Twb # 0.08C (R2 5 0.45) and 0.08 ,
Twb # 5.08C (R2 5 0.60), respectively (Fig. 12). Most other
Twb ranges had poor data correlation, yet some instances of
significant hourly counts of gauge observations within the
5.08 , Twb # 10.08C range signified that there might be some
hourly gauges that observed winter precipitation thawing but
were misidentified as FAIL in the scheme.

All other hourly observations having a WXCN classifica-
tion were from false zero observations (MRMS QC flag5 10)
that were likely a result of precipitation detected aloft by
radar but evaporated before reaching the surface (Fig. 11).
No seasonal variability existed in this dataset, yet a large
standard deviation existed based on daily weather patterns.
Approximately 88.04% of observations declared as a false
zero were in regions where hourly radar precipitation val-
ues were #1.27 mm (Fig. 13). This represented an average
of 283 gauge observations per hour. Approximately 69.5%
of all observations occurred in regions where the radar pre-
cipitation was #0.51 mm. An average of 38 observations
per hour were classified as FAIL with having collocated
precipitation values . 1.27 mm.

TABLE 6. Average hourly percentage distribution of how gauge
sites were assigned the FAIL classification within the precipitation-
only analysis.

Temporal QC
analysis period

Failed percentage
of FAIL

observations only

Failed bias
ratio check

only

Failed
both
checks

7-day analysis 88.29 0.84 10.87
30-day analysis 86.79 1.66 11.55

FIG. 11. As in Fig. 10, but for the initial hourly WXCN classification.
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Having a significant number of gauges with the additional
WXIMP flag during the cool season months can potentially
masked instrumental errors with gauges. The blanket applica-
tion of potential weather impacts on hourly observations that
could be influenced by winter precipitation, postwinter pre-
cipitation thawing, and potential virga not fully removed by
the MRMS system can inaccurately mark hourly observations
as WXCN that were truly erroneous observations. It can also be
possible that having a greater frequency of winter precipitation
impacts across the cool season minimizes the opportunities to
detect potential instrumentation malfunctions with gauges.

5. Verification

The most common gauge instrumentation malfunction in
the study was a clogged orifice or cylinder. These examples of
a gauge clog showed a period of precipitation followed by
multiple hours of either a constant or periodic recording of
hourly accumulations that were recorded as false nonzero ob-
servations (Fig. 14). The resulting residual accumulations
would vary based on the amount of clogging and how long it
occurred after the precipitation event. Typical residual accu-
mulations occurring immediately after a precipitation event

would range from 0.52 to 2.03 mm while more sporadic accu-
mulations toward the end of the period of false observations
were 0.25 mm. Each clogged gauge shown in Fig. 14 was char-
acterized by different properties based on the degree of clog-
ging. The frequency in the reporting of residual rainwater
with the clogging of PHIW2 (Fig. 14a) increased based on the
amount of estimated precipitation that occurred at the gauge
site (Table 7). The gauge TDGL1 was characterized by a
more substantial clog and tapering of residual rainfall collec-
tion after two significant precipitation events (Fig. 14b) where
less than 40% of the estimated precipitation was recorded
during the event followed by over 140 h of residual accumula-
tions (Table 7). The evolution of a clogging with STKN4 influ-
enced both the amount of precipitation accumulated during
the precipitation event and the duration of residual accumula-
tions postprecipitation (Fig. 14c). Bias ratio between the
gauge and MRMS radar-derived QPE for the first two precip-
itation events were .0.50 and then later followed by a signifi-
cant underestimation bias ratio , 0.11 (Table 7). The period
of residual accumulations after the precipitation events
continued to increase as the clogging became more significant
until the clog was cleared between 1600 and 1700 UTC
24 August 2021.

FIG. 12. Histogram of the coefficient of determination (R2) values comparing the overall num-
ber of observations per hour with the MRMS QC flag 5 20 and the number of observations per
hour within the specific model surface Twb range. The histogram colors are based on the model
surface Twb values that lead to an hourly WXCN (gray) or FAIL (brown) classification.

FIG. 13. Histogram of the percentage of hourly observations with the MRMS QC flag 5 10
and the MRMS gridded radar QPE values collocated at the gauge site. The histogram colors are
based on the MRMS gridded radar QPE values that lead to an hourly WXCN (gray) or FAIL
(brown) classification.

J OURNAL OF ATMOS PHER I C AND OCEAN I C TECHNOLOGY VOLUME 40276

Brought to you by NOAA Central Library | Unauthenticated | Downloaded 03/21/23 06:56 PM UTC



Another example of an obstruction that influenced gauge
observations were events that generally impacted the precipi-
tation hours only and left no residual drip or accumulation
postevent. The clogging of LBJK2 still had 92% of all available
hourly observations set as PASS with only 3.5% of all observa-
tions set as FAIL (Fig. 15). Most of the FAIL observations
were assigned a MRMS QC flag 5 40 (outlier low) during the
precipitation events, which resulted in a precipitation-only fail
rate of 61.3%; moreover, the bias ratio of 0.15 showed a signifi-
cant underreporting by the gauge. There were also numerous
hourly observations assigned a MRMS QC flag 5 10 that were
designated as BAD or WXCN. The frequency of false zero ob-
servations regardless of hourly classification combined with the
high quality of radar data (RAQI5 1.00; radar beam elevation
of approximately 160 m) further exemplified the obstruction-
type issue with LBJK2.

Additional types of instrumentation malfunctions were also
observed and verified. The site TDGL1 was located on a highway
bridge and had a new rain gauge installed on 13 August 2021;

however, instability issues with the gauge installation platform
yielded a mix of erroneous and missing observation values
(Fig. 16a). Most missing and false nonzero observations oc-
curred between 1300 and 0300 UTC daily, corresponding to
increase motor vehicle traffic on the bridge. The abrupt change
in performance for the site HBCN1 in August 2020 was due to a
firmware update that resulted in a software issue with the data
collection platform setup (Fig. 16b). Data reporting after the
firmware update featured a mix of missing observations and
erroneous reporting of false hourly gauge values of 5–160 mm
until the gauge was reprogrammed on 26 August 2020. A likely
hardware issue or associated wiring issue with the datalogger
and transmitter resulted in erroneous values during precipitation
events for the site LNRI2 (Fig. 16c). Erroneous hourly gauge
observations during precipitation events were typically exceeding
300 mm and peaked at 1600 mm, while MRMS hourly radar-
derived QPE accumulations were 3–18 mm. This resulted in
both a percentage classification of FAIL during precipitation
hours at 95.5% and a bias ratio of 56.49.

FIG. 14. A 30-day 3 24-h matrix of hourly QC classifications for gauges that were impacted by the clogging of the
gauge orifice or gauge cylinder. The hourly classifications shown in each matrix are based on the MRMS gauge QC
scheme and its resulting hourly temporal QC classification. The general shading of each hour was based on the tempo-
ral QC classifications of PASS (cyan), FAIL (brown), WXCN (dark gray), and N/A (or missing; light gray). The
gauges shown in the analysis are (a) PHIW2 from 0000 UTC 21 Aug to 2300 UTC 19 Sep 2021, (b) TDGL1 from
0000 UTC 18 Sep to 2300 UTC 17 Oct 2020, and (c) STKN4 from 0000 UTC 1 Aug to 2300 UTC 30 Aug 2021. Pre-
sented with each gauge are a series of statistical measures and temporal QC classifications, including the percentage
of gauge observations available, average RAQI value for each analysis period, analysis from the all observations and
precipitation-only components with their resulting temporal QC classifications, the final temporal QC classification,
and the additional WXIMP designation.
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The investigations into various gauge sites that were flagged
within the temporal QC algorithm demonstrated various
modes of failure and various degrees of impact on the history
of observations. The examples for PHIW2 (clogging; Fig. 14a)
and TDGL1 (platform stability; Fig. 16a) depict how a further
investigation of gauge sites classified as SUSP could identify a
potential instrumental factor that resulted in errors. And
while a gauge might be classified as SUSP across a 30-day
analysis period, events that highlight the potential instrumen-
tal error with the gauge could possibly be seen in the 7-day
analysis. The 7-day period ending 2300 UTC 3 September
2021 that followed the first residual dripping event from the

clogging had 29.6% of available hourly observations that
were marked as FAIL, which resulted in a final BAD tempo-
ral QC classification. A 30-day analysis matrix can also display
patterns in data that could characterize the potential instru-
mentation malfunction, such as the residual precipitation
drips from clogging (e.g., Fig. 14).

6. Summary

This paper presented a temporal gauge QC methodology
to identify potential gauge instrumentation malfunctions
based on the history of the gauge observational and QC

TABLE 7. Analysis of precipitation events and the time of postprecipitation drip into the gauge from clogging for the gauges
PHIW2, TDGL1, and STKN4 shown in Fig. 14. Listed in the table are the start and end times for analyzed precipitation periods that
were influenced by a clogging with the gauge, the accumulation of precipitation from the gauge (G) and MRMS radar-derived
QPE (R) during the period of precipitation only (i.e., not accounting for the collection of water by the gauge after the precipitation
period), and the duration of time (in hours) after the precipitation period that observed constant and/or periodic dripping of residual
rainfall into the gauge. The asterisk denotes that the last three precipitation and residual dripping events listed for gauge STKN4
were overlapping, and the residual accumulation period accounts for the combination of all three events until the clog was removed
by a USGS technician.

Gauge ID

Precipitation period with associated blockage
Accumulation during
precipitation period

Bias
ratio
(G/R)

Duration of
residual

accumulation (h)Start time End time

Gauge
total
(mm)

Radar
total
(mm)

PHIW2 2300 UTC 31 Aug 2021 1700 UTC 1 Sep 2021 23.87 36.20 0.659 45
0900 UTC 5 Sep 2021 0000 UTC 6 Sep 2021 6.07 8.60 0.706 63

TDGL1 1200 UTC 23 Sep 2020 0700 UTC 24 Sep 2020 21.35 77.00 0.277 148
0000 UTC 9 Oct 2020 1100 UTC 10 Oct 2020 36.59 102.50 0.357 145

STKN4 0700 UTC 8 Aug 2021 1100 UTC 8 Aug 2021 4.07 7.70 0.529 4
2200 UTC 10 Aug 2021 0400 UTC 11 Aug 2021 8.64 12.60 0.686 103
0500 UTC 19 Aug 2021 0700 UTC 19 Aug 2021 3.81 39.80 0.096 134*
0600 UTC 22 Aug 2021 1600 UTC 22 Aug 2021 1.25 41.80 0.030
2100 UTC 22 Aug 2021 1000 UTC 23 Aug 2021 2.76 25.30 0.109

FIG. 15. As in Fig. 14, but for the gauge LBJK2 that experienced a clogging issue that impacted the precipitation-only
periods. The matrix period for LBJK2 is from 0000 UTC 23 Apr to 2300 UTC 22 May 2021.
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performance. This temporal QC scheme utilized the hourly
gauge QC within the MRMS system to create initial hourly
classifications. Those hourly classifications were analyzed
over running 7- and 30-day periods using two groups of data:
1) all available observations and 2) observations where both
the gauge and collocated gridded radar QPE accumulations
were nonzero. The importance of having two different tempo-
ral analysis periods and two groups of gauge data allowed for
a detailed examination from various perspectives.

The temporal QC logic can provide the ability to diagnose
gauge performance history through quantified measures. The
gauge analyses were characterized by a generally consistent
BAD temporal QC classification with an average of 2.9% h21

for the running 7-day analysis period and 4.4% for the run-
ning 30-day analysis period. A temporal QC scheme can be
beneficial to network operators for the monitoring of gauge
performance and identifying performance degradation prior
to routine maintenance; moreover, these benefits allow for
more prompt gauge maintenance and for improved product
generation and verification through more high-quality
observations.

While the automated temporal QC scheme presented here
provides a baseline analysis for identifying the potential for in-
strumentation malfunctions through the gauge performance,
the authors acknowledge that some aspects can benefit from
additional research. Future sensitivity studies could explore a

more optimum temporal analysis period that could best detect
gauges with degraded performance from an instrumentation
malfunction. Some gauge sites and gauge observations that
were classified as BAD might not have an instrumentation mal-
function. This could be contributed to biases and limitations
with the collocated gridded radar QPE, the hourly MRMS
gauge QC scheme, or with the temporal QC scheme presented
in this study. The increase in the additional WXIMP classifica-
tions during the cool season was unsurprising and provided a
useful insight that most gauges cannot handle winter precipita-
tion, which is more a function of the design limitations of the
gauge. How a gauge was classified with weather-related impacts
to the observations highlighted the challenges in distinguishing
between nominal functioning gauges and those with an instru-
mentation malfunction. This was especially true with instances
of postwinter precipitation thawing. Future studies will focus on
delineating between false nonzero observations that were a re-
sult of winter precipitation thawing or of another factor. Addi-
tional work can also investigate instances when truly erroneous
observations were masked by the weather impacts classification
(e.g., false zero observations during light rain) and how to miti-
gate those misclassifications.
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FIG. 16. As in Fig. 14, but for gauges that were impacted by other instrumental factors not related to the clogging of a
gauge. The gauges shown in the analysis are (a) TDGL1 from 0000 UTC 18 Aug to 2300 UTC 16 Sep 2021, (b) HBCN1
from 0000 UTC 26 Jul to 2300 UTC 24 Aug 2020, and (c) LNRI2 from 0000 UTC 10 Aug to 2300 UTC 8 Sep 2021.
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